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Chapter 3

Structural Stringency of Cholesterol for Membrane Protein 
Function Utilizing Stereoisomers as Novel Tools: A Review

Md. Jafurulla and Amitabha Chattopadhyay

Abstract

Cholesterol is an important lipid in the context of membrane protein function. The function of a number 
of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown 
to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regula-
tion is still being explored. In some cases, specific interaction between cholesterol and the protein has been 
implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the 
regulation of protein function. In this article, we have provided an overview of experimental approaches 
that are useful for determining the degree of structural stringency of cholesterol for membrane protein 
function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic 
pathway in the function of membrane proteins. Special emphasis has been given to the application of ste-
reoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane 
protein function. A comprehensive examination of these processes would help in understanding the molec-
ular basis of cholesterol regulation of membrane proteins in subtle details.

Key words Cholesterol, Cholesterol-binding motif, ent-Cholesterol, epi-Cholesterol, GPCRs, Ion 
channels, Stereoisomers, Stereospecificity

1 Introduction

Biological membranes exhibit a vast degree of functional and com-
positional heterogeneity and provide an ideal environment for the 
function of a variety of membrane lipids and proteins. A compre-
hensive understanding of diverse membrane functions requires 
deciphering molecular details of interactions between membrane 
components. Work from a number of groups has led to our current 
understanding of the requirement of specific lipids in the function 
of membrane proteins [1]. An important membrane lipid in this 
context is cholesterol, which exhibits heterogeneous (nonrandom) 
distribution in membranes and has been shown to modulate func-
tions of several membrane proteins [1–8]. In this context, two 
important classes of membrane proteins studied are seven trans-
membrane domain G protein-coupled receptors (GPCRs) and ion 
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channels. GPCRs constitute an important superfamily of proteins 
that mediate a variety of physiological processes and serve as major 
drug targets in all clinical areas [9] (see below). Ion channels, on 
the other hand, are transmembrane proteins that regulate ionic 
permeability across cell membranes.

Although the cholesterol-dependent function for several pro-
teins and peptides has been reported, the molecular details and 
specificity of their interaction are still emerging. Recent technical 
advancements, and ready availability of multiple agents for modu-
lation of membrane cholesterol and close structural analogs of cho-
lesterol, have made it possible to delineate the structural stringency 
associated with the interaction of cholesterol with membrane pro-
teins and receptors. In this article, we provide an overview of the 
approaches, particularly utilizing structural analogs of cholesterol, 
for addressing structural stringency of cholesterol for the function 
of membrane proteins, with special emphasis on stereoisomers of 
cholesterol.

2 Requirement of Cholesterol for the Function of Membrane Proteins

The detailed mechanism underlying the modulation of the struc-
ture and function of membrane proteins and receptors by mem-
brane cholesterol is not completely understood and appears to be 
complex [5, 10, 11]. It has been proposed that cholesterol could 
modulate the function of membrane receptors by a direct (specific) 
interaction, which could induce conformational change(s) in the 
receptor, or by altering the physical properties of the membrane in 
which the receptor is embedded. Yet another possibility could be a 
combination of both. Importantly, the concept of “nonannular”-
binding sites of lipids in membrane proteins has been proposed as 
specific interaction sites [11, 12]. These sites are characterized by 
lack of accessibility to the annular lipids, i.e., annular lipids cannot 
compete and displace the lipids at these sites [13, 14].

Work from our laboratory and others has comprehensively 
demonstrated the role of membrane cholesterol in the organiza-
tion, dynamics, function, and stability of GPCRs (reviewed in refs. 
[2–7, 9]). For example, cholesterol has been shown to play an 
important role in the function and stability of the serotonin1A 
receptor [15–17], β2-adrenergic receptor [18–20], cholecystokinin 
receptor [21], serotonin7a receptor [22], oxytocin receptor [23, 
24], and human type-1 cannabinoid receptor [25]. In addition, 
cholesterol has been shown to play a crucial role in the function 
and organization of several ion channels [8]. For example, the spe-
cific role of cholesterol in the activation, trafficking, and desensiti-
zation of the nicotinic acetylcholine receptor has been previously 
reported [26–31]. Cholesterol has been shown to modulate the 
agonist effectiveness of GABAA receptors and an optimal 
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requirement of cholesterol for the channel function has been 
reported [32–35]. In addition, membrane cholesterol has been 
shown to modulate the function of multiple types of K+ channels 
(reviewed in refs. [8, 36], see below), the channel opening probability 
(lifetime), and the rate of desensitization of NMDA receptors [37].

As mentioned above, previous work from our laboratory has 
shown an absolute requirement of membrane cholesterol in the 
function of the serotonin1A receptor (reviewed in refs. [3, 5, 7]). 
We employed several approaches to explore the specific role of mem-
brane cholesterol in the organization, dynamics, and function of the 
serotonin1A receptor. These approaches include: (1) acute modula-
tion of membrane cholesterol using MβCD; (2) complexation of 
membrane cholesterol (without physical depletion) by agents such 
as nystatin and digitonin; (3) chemical modification of cholesterol to 
cholestenone using cholesterol oxidase; and (4) use of metabolic 
inhibitors of cholesterol biosynthesis such as statins and AY 9944. 
Interestingly, we utilized the loss in membrane cholesterol associ-
ated with receptor solubilization [38, 39] as an effective strategy to 
explore specific cholesterol effects on receptor function. We will 
discuss some of these approaches in detail later in the review.

Several structural features of proteins believed to assist prefer-
ential association with cholesterol have been recently reported [5, 
7, 40, 41]. Prominent sites among them are CRAC (cholesterol 
recognition/interaction amino acid consensus) motif [41–44], 
CCM (cholesterol consensus motif) [45], SSD (sterol-sensing 
domain) [46, 47], and CARC (inverse CRAC) motif [41, 48, 49]. 
These cholesterol-binding sequences or motifs have been proposed 
to contain an aromatic amino acid that could interact with the near 
planar ring structure of cholesterol [45, 50], and a positively 
charged residue capable of participating in electrostatic interac-
tions with the 3β-hydroxyl group of cholesterol [43, 50, 51]. In 
this context, it is important to note that the proposed “nonannular”-
binding sites of lipids in membrane proteins could be considered 
specific interaction sites [11, 12] with possible locations at inter or 
intramolecular (interhelical) protein interfaces. Detailed analysis of 
the role of individual amino acids in these putative cholesterol 
interaction sites could help us understand the specific requirement 
of cholesterol observed for the function, organization, dynamics, 
and signaling of membrane proteins.

3 Approaches for Altering the Content and Availability of Membrane Cholesterol

A convenient way of exploring the structural stringency of lipids 
for the function of integral membrane proteins is to replace or 
modifty the lipid of interest to close structural analogs and examine 
the protein function. It therefore becomes important to look for 
specific tools to modulate or exchange the lipid of interest with its 
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close structural analogs. In many instances, enzymes that modify 
specific sites of lipids have been utilized for this purpose. The role 
of membrane cholesterol in the function of membrane proteins has 
been studied by a number of groups using a variety of agents to 
modulate the availability of membrane cholesterol. These include 
inhibitors of cholesterol biosynthesis (e.g., statins, triparanol, 
AY9944), cholesterol oxidase that oxidizes membrane cholesterol, 
agents physically modulating the cholesterol content (e.g., methyl- 
β- cyclodextrin (MβCD)), and cholesterol sequestering compounds 
(e.g., amphotericin B, digitonin, nystatin, filipin). We discuss some 
of these approaches in detail below.

Acute and specific depletion of membrane cholesterol is possible 
due to the development of cyclodextrins that act as effective cata-
lysts of cholesterol efflux from membranes [52]. Among a variety 
of cyclodextrins available with broad specificity for membrane lip-
ids, the oligomer with seven methylated-glucose residues (MβCD) 
displays higher specificity for cholesterol relative to phospholipids 
(see Fig. 1a). The polar nature and small size of cyclodextrins com-
pared to other lipid carriers, allow them to come close to the mem-
brane without partitioning and favor efficient efflux of cholesterol. 
MβCD has therefore been extensively utilized and has evolved as a 
convenient tool to selectively and efficiently modulate membrane 
cholesterol by incorporating it in a central nonpolar cavity [53–56]. 
The stoichiometry of 1:2 (mol/mol) has been reported for such 
cholesterol-cyclodextrin complexes [56–58].

Complexation of membrane cholesterol, which effectively reduces 
the availability of cholesterol without physical depletion, represents 
a strategy to minimize any nonspecific effects associated with cho-
lesterol depletion from membranes. When used at appropriate 
concentrations, cholesterol complexing agents partition into mem-
branes and sequester cholesterol. These agents include digitonin, 
filipin, nystatin, and amphotericin B. Digitonin is a plant glycoal-
kaloid saponin detergent known to form water-insoluble 1:1 com-
plex with cholesterol [59–61]. Nystatin [55, 62–65] and 
amphotericin B [62, 63, 66–70] are sterol-binding antifungal 
polyene antibiotics that are known to sequester membrane choles-
terol (see Fig. 1). They effectively partition into membranes and 
sequester cholesterol (1:1 (mol/mol) complex) and form channels 
in the membrane. On the other hand, filipin is a fluorescent sterol- 
binding antifungal polyene antibiotic, often utilized to stain  free 
cholesterol in fixed cells [54, 63]. These agents reduce the avail-
ability of cholesterol for its interaction with membrane receptors.

A chronic and more physiological way of reducing membrane cho-
lesterol content is by inhibiting cholesterol biosynthesis. A number 
of cholesterol biosynthesis inhibitors have been used for reducing 

3.1 Specific Carriers 
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Fig. 1 Compounds that modulate availability of membrane cholesterol. (a) The chemical structure of 
β-cyclodextrin (containing seven glucose residues). Cyclodextrins can solubilize a variety of hydrophobic com-
pounds by trapping them in their inner cavity. The oligomer with seven methylated-glucose residues (MβCD, 
where R denotes a methyl group) displays higher specificity for cholesterol relative to phospholipids. The 
stoichiometry of 1:2 (mol/mol) has been reported for such cholesterol-cyclodextrin complex. The chemical 
structures of cholesterol complexing agents such as (b) digitonin, (c) filipin, (d) amphotericin B, and (e) nystatin. 
Digitonin is a plant glycoalkaloid saponin detergent, while filipin, amphotericin B, and nystatin belong to the 
group of sterol-binding antifungal polyene antibiotics. Complexation of membrane cholesterol, which effec-
tively reduces the availability of cholesterol without physical depletion, has been utilized as a strategy to mini-
mize any nonspecific effects associated with use of MβCD to remove membrane cholesterol. Cholesterol 
complexing agents partition into membranes and sequester cholesterol. See text for more details
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membrane cholesterol in metabolically active cells. For example, 
statins are a group of globally best selling drugs that are widely 
used for reducing membrane cholesterol. They act as competitive 
inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG- 
CoA) reductase, a key rate-limiting enzyme in early cholesterol 
biosynthesis [71–73]. In addition, several distal inhibitors of cho-
lesterol biosynthesis have been utilized. For example, AY9944 and 
BM15766 inhibit 7-dehydrocholesterol reductase (7-DHCR), an 
enzyme that catalyzes the last step in the Kandutsch-Russell path-
way [74], and results in the accumulation of 7-dehydrocholesterol 
(7-DHC). This mimics one of the most serious autosomal reces-
sive disease conditions called Smith-Lemli-Opitz Syndrome 
(SLOS) [75–79]. On the other hand, triparanol, another distal 
inhibitor of cholesterol biosynthesis, acts on 24- dehydrocholesterol 
reductase (24-DHCR), which catalyzes the last step in the Bloch 
pathway of cholesterol biosynthesis [80]. This results in accumula-
tion of desmosterol which mimics another autosomal recessive dis-
order called desmosterolosis [78, 79, 81–84]. The use of these 
distal cholesterol biosynthesis inhibitors (AY9944, BM15766 and 
triparanol) has been limited because of severe effects resulting from 
accumulation of cholesterol precursors [85].

Oxidation of membrane cholesterol by the enzyme cholesterol oxi-
dase is yet another approach to modify the chemistry of cholesterol 
within the membrane without physical depletion. Cholesterol oxi-
dase is a water-soluble enzyme that catalyzes the oxidation of cho-
lesterol to cholestenone (cholest-4-en-3-one) at the membrane 
interface [86, 87]. The impact of oxidation of hydroxyl group of 
cholesterol appears to be relatively mild on membrane physical 
properties, and thereby is thought to minimize the nonspecific 
effects of cholesterol modulation.

4  Structural Analogs Utilized for Deciphering Stringency of Membrane 
Cholesterol in Protein Function

An efficient and quick way to explore structural stringency of cho-
lesterol for a given process is to replace cholesterol with its close 
structural analogs. This is often conveniently achieved by depleting 
cholesterol using MβCD or metabolic inhibitors, and replacing it 
with its structural analogs either by utilizing a preformed sterol- 
MβCD complex, or by supplementation in reconstituted LDL par-
ticles in the culture medium of cells. Yet another convenient 
approach to explore the structural stringency of cholesterol for 
protein function is membrane solubilization using appropriate 
detergents [88, 89]. Membrane solubilization is often associated 
with delipidation (loss of lipids), and results in differential extents 
of lipid solubilization [38, 39]. Since membrane lipids play an 

3.4 Enzymatic 
Oxidation 
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important role in maintaining the function of membrane proteins 
and receptors, such delipidation upon solubilization often results 
in loss of protein function. This phenomenon has been effectively 
utilized to explore molecular details of specific lipid requirements 
for the function of membrane proteins [90, 91] and has been 
recently reviewed [89].

As mentioned above, work from our laboratory and others has 
shown the crucial role of membrane cholesterol in the organization, 
dynamics, function, and stability of GPCRs [2–7, 9]. Availability of 
the above-mentioned agents and structural analogs of cholesterol 
(see sections 4.1 and 4.2) has made it possible to examine the struc-
tural stringency of cholesterol necessary for the function of several 
membrane proteins and peptides. These include ion channels, GPCRs, 
model peptides such as gramicidin and toxins such as Vibrio cholerae 
cytolysin and streptococcal streptolysin O. We discuss below some of 
the close structural analogs of cholesterol that have been utilized for 
exploring the stringent requirement of cholesterol in the function 
of membrane proteins and peptides.

7-DHC and desmosterol are two close structural analogs of cho-
lesterol, which differ with cholesterol merely in an additional 
double bond at the 7th position in the sterol ring and the 24th 
position in alkyl side chain, respectively (see Fig. 2b, c). 7-DHC 
and desmosterol are immediate biosynthetic precursors of choles-
terol in the Kandutsch-Russell and Bloch pathways, respectively. 
Malfunctioning of enzymes that catalyze the conversion of 7-DHC 
and desmosterol to cholesterol (7-DHCR and 24-DHCR) results 
in low levels of serum cholesterol and accumulation (high levels) of 
the respective immediate precursors. This leads to fatal neurologi-
cal disorders such as the Smith-Lemli-Opitz Syndrome (SLOS) 
and desmosterolosis [78, 79]. Availability of these structural ana-
logs of cholesterol in relatively pure form has been useful to address 
the underlying mechanism of malfunctioning of proteins under 
such disease conditions.

Work from our laboratory and others has utilized these struc-
tural analogs to explore the function of important membrane 
 proteins such as ion channels and GPCRs. For example, previous 
work from our laboratory has explored whether 7-DHC or desmo-
sterol could replace cholesterol in supporting the function of the 
serotonin1A receptor, an important neurotransmitter receptor [92, 
93]. An interesting aspect of our results is that the requirement of 
cholesterol for the function of the serotonin1A receptor was shown 
to be considerably stringent. Our results showed that while desmo-
sterol could support the receptor function [84], 7-DHC could not 
[77, 94, 95]. In addition, cholesterol has been shown to inhibit the 
activity of a prokaryotic Kir (KirBac1.1) channel, while replacement 
with desmosterol has been reported to enhance channel activity 
[96]. In contrast, it has been shown that replacement of cholesterol 

4.1 Biosynthetic 
Precursors 
of Cholesterol: 7-DHC 
and Desmosterol
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with 7-DHC or desmosterol has relatively mild effect on the func-
tion of two structurally related peptide receptors, the oxytocin 
receptor and the cholecystokinin receptor [23].

Stereoisomers of cholesterol such as enantiomer of cholesterol 
(ent-cholesterol) and epi-cholesterol (a diastereomer of cholesterol) 
have been developed as novel tools to differentiate the specific and 

4.2 Stereoisomers 
of Cholesterol

Fig. 2 Chemical structures of (a) cholesterol, and its structural analogs; (b) 7-dehydrocholesterol (7-DHC) and 
(c) desmosterol are immediate biosynthetic precursors of cholesterol in the Kandutsch-Russell and Bloch 
pathways, respectively, which differ with cholesterol merely in an additional double bond at the 7th position in 
the sterol ring and the 24th position in the alkyl side chain; (d) ent-cholesterol and (e) epi-cholesterol are 
stereoisomers of cholesterol. The enantiomer of cholesterol (ent-cholesterol) is the nonsuperimposable mir-
ror image of natural cholesterol and exhibits similar physicochemical properties. epi-Cholesterol, on the other 
hand, is a diastereomer of cholesterol, that differs with cholesterol only in the orientation of the hydroxyl 
group at carbon-3, which is inverted relative to natural cholesterol. Adapted from ref. 89. See text for more 
details
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general effect of cholesterol in protein function. ent-Choles-
terol is the nonsuperimposable mirror image of natural choles-
terol (see Fig. 2d) and exhibits similar biophysical properties in the 
membrane (such as compressibility, phase behavior, and dipole 
potential) as natural cholesterol [97–99]. In addition, ent- 
cholesterol has been shown to support normal growth of a mutant 
mammalian cell line similar to its natural counterpart [100]. epi- 
Cholesterol, on the other hand, is a diastereomer of cholesterol 
that differs with cholesterol only in the orientation of the hydroxyl 
group at carbon-3, which is inverted relative to natural cholesterol 
(Fig. 2e). epi-Cholesterol has been shown to exhibit differences in 
membrane biophysical properties (such as condensing ability, tilt 
angles, and phase transition) relative to natural cholesterol 
(reviewed in refs. [97, 98]). ent-Cholesterol is often utilized to 
distinguish whether the effect of cholesterol observed is due to 
specific interaction with membrane components such as proteins 
and peptides, or due to general membrane (nonspecific) effects 
[97–103]. The selectivity of natural cholesterol and its enantiomer 
on the function of several peptides and proteins has been studied 
in detail. We discuss some of these examples below.

G protein-coupled receptors (GPCRs) are important superfamily 
of transmembrane proteins that primarily transduce signals from 
outside the cell to the cellular interior [104–106]. GPCRs mediate 
a vast variety of physiological processes and therefore serve as major 
drug targets in all clinical areas [9, 107–109]. Recent work from 
our laboratory has addressed the stereospecific requirement of 
cholesterol utilizing ent-cholesterol and epi-cholesterol for the 
function of the serotonin1A receptor. In order to determine the 
structural stringency of cholesterol, we replenished solubilized 
membranes (which contain significantly less cholesterol compared 
to native membranes [38, 39]) with ent-cholesterol or epi- 
cholesterol and examined if they could support receptor function. 
Our results showed that ent-cholesterol behaved similarly to native 
cholesterol in supporting the function of the serotonin1A receptor, 
although epi-cholesterol could not support receptor function 
[110] (see Fig. 3). Our results therefore point out the requirement 
of membrane cholesterol for the serotonin1A receptor function to 
be diastereospecific, yet not enantiospecific. These results also 
highlighted the equatorial configuration of the 3-hydroxyl group 
of cholesterol as a key structural feature for its ability to support 
the serotonin1A receptor function. These results, along with our 
previous observations with other close structural analogs of choles-
terol [77, 84, 94, 95], extended our understanding of the degree 
of specificity of interaction of membrane cholesterol with the sero-
tonin1A receptor. In an earlier study, it has been shown that epi- 
cholesterol could not support the specific ligand binding to the 
oxytocin receptor (a peptide binding GPCR for which the specific 

4.2.1 G Protein-Coupled 
Receptors
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requirement of membrane cholesterol for its function has been 
demonstrated [23]). Taken together, these results demonstrate 
the stringent requirement of cholesterol structure for the function 
of GPCRs.

Ion channels are transmembrane proteins that regulate ionic per-
meability across cell membranes and are crucial for normal func-
tioning of cells. Malfunctioning of ion channels has been implicated 
in a number of diseases collectively known as “channelopathies” 
[111]. Membrane cholesterol has been shown to modulate the 
function of several ion channels, such as multiple types of K+ chan-
nels, including inwardly rectifying, Ca2+-sensitive and voltage- gated 
K+ channels, voltage-gated Na+ and Ca2+ channels, volume-regu-
lated anion channels (reviewed in ref. 8). In many cases, cholesterol 
inhibited the channel function either by decreasing the channel 
opening probability (lifetime) or the number of active channels. In 
contrast, cholesterol is observed to be essential for the function of 
the nicotinic acetylcholine receptor (nAChR) [27, 30] and GABAA 
receptors [32–34]. Although cholesterol has been shown to modu-
late the function of a number of ion channels, the structural strin-
gency of cholesterol (stereospecificity in particular) and details of 
molecular interaction have been explored only in a few cases. For 
example, the enantioselectivity of cholesterol for the function of 
inward rectifier K+ channels from bacteria (KirBac1.1 and KirBac3.1) 
and human (Kir2.1) has been studied. While natural cholesterol is 
known to inhibit these channels, its enantiomer, ent-cholesterol, 
does not inhibit the channel function. It was therefore concluded 
that the regulation of channel function by the membrane choles-
terol is through possible direct channel- cholesterol interaction 
[102]. In addition, the stereoselectivity of cholesterol in the func-
tion of inward rectifier K+ channels has been previously explored 
utilizing the diastereomer of cholesterol  (epi- cholesterol) [112]. 
Similarly, epi-cholesterol has been shown to be significantly less effi-
cient than natural cholesterol in inhibiting the activity of prokaryotic 
Kir (KirBac1.1) channels [96]. These results show an absolute 
requirement of cholesterol for maintaining channel function with 
possible direct interaction with the protein.

In contrast, the cholesterol dependence of agonist stimulated 
channel conductance of the nicotinic acetylcholine receptor has been 
shown to be supported by both ent-cholesterol and epi- cholesterol 
[113]. In yet another study, channel formation of gramicidin in the 
presence of stereoisomers of cholesterol was studied. Gramicidin is 
a 15-residue linear antimicrobial peptide that forms prototypical 
ion channels specific for monovalent cations and serves as an excel-
lent model for studying the organization, dynamics, and function 
of membrane-spanning channels [114–116]. Both natural and 
ent-cholesterol were observed to support the formation of identical 
gramicidin ion channels [101]. The results with the nicotinic 

4.2.2 Ion Channels
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acetylcholine receptor and gramicidin channels were therefore 
attributed to a nonspecific mode of regulation of protein function 
by membrane cholesterol (i.e., through influence on membrane 
physical properties).

Cholesterol homeostasis in cells is stringently maintained through 
interaction of key proteins that sense membrane cholesterol levels. 
Among the proteins involved, sterol regulatory element-binding 
protein 2 (SREBP-2) and SREBP cleavage-activating protein 
(Scap) play important roles in cholesterol homeostasis. Cellular 
cholesterol regulates its own synthesis by modulating the activa-
tion of SREBP-2 transcription factors [117]. When in excess, cho-
lesterol in the endoplasmic reticulum (ER) is sensed by Scap which 
upon conformational change assists binding of Insig, a protein that 
tethers the SREBP-Scap complex at ER in inactive form [118–
120]. When cholesterol levels fall below a certain threshold, 
SREBP-2 is transported to the Golgi by Scap and is activated upon 
proteolytic cleavage. The activated (cleaved) fragment gets translo-
cated to nucleus that induces expression of proteins involved in 
biosynthesis and uptake of cholesterol.

In a recent study, cholesterol enantioselecivity for proteins 
involved in cholesterol homeostasis was explored [103]. This study 
showed that activation of SREBP-2, the master transcriptional reg-
ulator of cholesterol metabolism, is suppressed by ent-cholesterol 
with similar efficiency as natural cholesterol. In agreement with 
this, the expression of target genes of SREBP-2 such as LDLR 
(LDL receptor), HMGCR (HMG-CoA reductase), and SQLE 
(Squalene epoxidase/monooxygenase) is suppressed by ent- 
cholesterol, similar to natural cholesterol. Importantly, ent- cholesterol 
induced the conformational change in the cholesterol-sensing pro-
tein Scap like its natural counterpart, which would result in reten-
tion of SREBP-2 in ER. Taken together, these results show that 
ent-cholesterol exhibits similarly homeostatic responses as natural 
cholesterol. On this basis, it has been suggested that cholesterol 
could also maintain its homeostasis through alterations in mem-
brane properties beyond those specific cholesterol–protein interac-
tions currently recognized [103].

Enantioselectivity of some of the enzymes involved in cholesterol 
metabolism has been previously examined. Cholesterol oxidase 
that catalyzes oxidation of cholesterol is one of the well-studied 
and extensively utilized enzymes. Cholesterol oxidase is a water- 
soluble enzyme that catalyzes the oxidation of cholesterol to 
cholestenone (cholest-4-en-3-one) at the membrane interface [86]. 
The stereospecificity of cholesterol recognition by cholesterol 
oxidase has been explored earlier [121]. Results showed that while 
ent-cholesterol serves as a substrate for cholesterol oxidase, the 
kinetics of oxidation is slower and oxidation was incomplete as 

4.2.3 Regulators 
of Cholesterol Homeostasis
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compared to its natural analog. In another study, acyl CoA cho-
lesterol acyltransferase (ACAT), an ER resident enzyme that cata-
lyzes cholesterol esterification, has been shown to be enantioselective 
for cholesterol, with ent-cholesterol being a poor substrate [122]. 
In contrast, proteasomal degradation of squalene monooxygenase, 
a key enzyme in cholesterol biosynthesis, has been shown to be 
accelerated by ent-cholesterol similarly to natural cholesterol, 
although to a lesser extent [103]. While enzyme substrate interac-
tion is thought to be very stringent, studies with close structural 
analogs, especially the stereoisomers help broaden our understand-
ing of stringency of their interaction.

The mechanism of action of several pore-forming toxins to selec-
tively permeabilize host membranes is explained by their specific 
interaction with sterols in eukaryotic membranes, and cholesterol 
in particular, in higher eukaryotes. The requirement of cholesterol 
for the activity of bacterial pore-forming toxins such as Vibrio chol-
erae cytolysin [123] and streptococcal streptolysin O [124] has 
been reported earlier. In the case of Vibrio cholerae cytolysin, cho-
lesterol has been shown to be required for membrane permeabili-
zation, and cytolysin could not permeabilize membranes when 
cholesterol was replaced with ent-cholesterol [125]. These results 
highlight the enantioselectivity of cholesterol for its function. 
On the other hand, cholesterol has been shown to be essential for 
the membrane binding of streptococcal streptolysin O, which 
exhibited permeabilization of membranes in the presence of ent- 
cholesterol, albeit with less potency [125]. Bacterial toxins such as 
Staphylococcus aureus α-hemolysin and Streptococcus agalactiae 
CAMP factor, whose erythrocyte lysis is dependent on membrane 
cholesterol, did not exhibit enantioselectivity [126]. These results 
suggest a lower degree of structural specificity in toxin-sterol inter-
actions, and the change in cholesterol-dependent membrane prop-
erties, but not direct interaction, could affect the function of these 
bacterial toxins.

It is important to mention here that in all the above-mentioned 
examples where the stereospecificity of cholesterol has been explored, 
ent-cholesterol has been particularly utilized to differentiate the spe-
cific and general role of cholesterol in protein function. The crucial 
assumption in these studies is that the specific cholesterol  binding 
site would be geometrically stringent enough that it could differenti-
ate the enantiomers. While such stringency would require more than 
two specific interactions between the ligand and the receptor, at least 
four geometrical constraints are proposed to be required to distin-
guish the enantiomers [97, 98]. However, in a protein that is non-
rigid, defining such geometrical constraints would be difficult. 
Interestingly, a possibility of a non- enantioselective pattern of bind-
ing in a non-geometrically constrained protein cleft (such as a non-
annular lipid binding site, as discussed above) has been earlier 
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proposed [97, 98]. It is therefore important to keep this caveat in 
mind when interpreting a finding of lack of enantioselectivity.

5 Conclusion and Future Perspectives

Advances in techniques to modulate the accessibility of membrane 
cholesterol, along with the availability of close structural analogs of 
cholesterol, have made it possible to delineate the structural strin-
gency of cholesterol required for maintaining the optimum func-
tion of several membrane proteins such as GPCRs and ion channels. 
In particular, the stereoisomers of cholesterol have been useful in 
examining the specific effect of cholesterol from its general effects 
on membrane properties. Taken together, these approaches have 
helped us address the molecular details of regulation of membrane 
protein function by cholesterol. Insights from such studies could 
help us understand details of functioning of important membrane 
proteins in healthy and diseased conditions with impaired choles-
terol metabolism.
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